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FOREWORD

This report was prepared by the National Bureau of Stan-
dards, Institute for Materials Research, United States Department
of Commerce under Contract C-35560-A. The contract was ad-
ministered by the Lewis Research Center of the National Aero-
nautics and Space Administration, Cleveland, Ohio. The work
summarized in this report was performed during the period 15
July 1964 to 15 July 1967. The NASA project manager for the
Contract was Mr, Werner R, Britsch. Mess'rs. R.S. Ruggeri,
T. F. Gelder, and R. D. Moore of the Fluid Systems Components
Division at NASA Lewis Research Center---under the direction
of M, J. Hartmann---served as research consultants and tech-

nical advisers during the course of this program.
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Interim Report
CAVITATION INCEPTION IN LIQUID NITROGEN
AND LIQUID HYDROGEN FLOWING IN A VENTURI
by
D. K. Edmonds, J. Hord, and D. R. Millhiser

ABSTRACT

Cavitation characteristics of liquid hydrogen and liquid ni-
trogen in a transparent plastic venturi have been determined. The
experimental data are presented in tabular and graphical form.
Conventional cavitation-parameter and head~velocity curves are
given over the range of experimental temperatures (36.5 to 41°R
for hydrogen and 140 to 170°R for nitrogen) and inlet velocities
(70 to 185 ft/sec for hydrogen and 20 to 70 ft/sec for nitrogen).
Minimum local wall pressure was calculated to be less than bulk
stream vapor pressure by as much as 323 feet of hydrogen head

and 63 feet of nitrogen head.
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1. Introduction

Cavitation is usually defined as the formation, caused by a reduc-
tion in pressure, of a vapor phase within a flowing liquid or at the inter-
face between a liquid and a solid. Since the formation and collapse of
vapor cavities alters flow patterns, cavitation may reduce the efficiency
of pumping machinery[1l], and reduce the precision of flow measuring
devices. Collapse of these vapor cavities can also cause serious erosion

damage[ 2] to fluid handling equipment.

NASA has undertaken a program| 1] to determine various cavitation
characteristics of different fluids in an effort to develop design criteria
to aid in the prediction of cavitation in pumps. The experimental study
described herein was conducted in support of this program. Liquid
hydrogen and liquid nitrogen were chosen as test {luids for this study for
the following reasons: (1) the ultimate goal of this program is to acquire
sufficient knowledge to permit intelligent design of pumps for near-boiling
liquids and (2) predictive analyses| 1] indicated that the physical proper-

ties of hydrogen and nitrogen make them particularly desirable test fluids.

The objective of this study was to determine the flow conditions
required to induce cavitation, in liquid hydrogen and liquid nitrogen, on
the walls of a transparent plastic venturi. The shape of the venturi was
chosen to duplicate the test section used by NASA[3-6]. Tests were con-
ducted with test section inlet velocities of 70 to 185 ft/sec in hydrogen
and 20 to 70 ft/sec in nitrogen. Inlet temperatures were varied from
36.5 to 41°R with hydrogen and from 140 to 170°R with nitrogen in order
to determine the effects of temperature upon cavitation inception. The
data reported here are intended to supplement that given in several NASA
technical notes[3-6] for a geometrically similar, but 1.414 times as large,
test section. Comparison of NASA and NBS inception data for liquid

nitrogen at about 140°R indicates no scale effects. Both incipient and



desinent cavitation data were acquired with no noticeable hysteresis; i. e.,
the flow conditions corresponding to vapor inception are identical whether
the data point is approached from non-cavitating or fully-developed cavi-

tating flow. In this report, incipience refers to the appearance of visible

vapor cavities, whether they are due to incipient or desinent cavitation.
2. Apparatus

The facility used for this study consisted of a blow-down system
with the test section located between the supply and receiver dewars;
see figure 2. 1. Dewars and piping wére vacuum shielded to minimize heat
transfer to the test fluid. Flow control was attained by regulating the sup~
ply and receiver dewar pressures. Pressure and volume capacities of
the supply and receiver vessels are indicated on figure 2.1. The receiver
dewar pressure control valving limited the ventur! inlet velocity, Vo, to
about 185 ft/sec in hydrogen, while the supply dewar pressure rating
limited the inlet velocity to about 70 ft/sec in nitrogen.

Valves located on each side of the test section permit flow stoppage
in the event of venturi failure while testing with liquid hydrogen. A plenum
chamber was installed upstream of the test section to assure uniform non-
cavitating flow at the test section inlet. The supply dewar was equipped

with a 5 Kw heater which was used to heat the test fluid.
2.1 Test Section

A photograph of the test section as viewed through one of the win-
dows in the vacuum jacket ia shown in figure 2.2, The transparent plastic
venturi was flanged into the apparatus using high compression elastomeric
"Q" rings. Test section details are given in figures 2.3 and 2.4. Refer-
ring to figure 2.3, static pressure tap No, 1 was the only instrument port
drilled and used in the liquid hydrogen inception tests. Some liquid nitro-

gen data were acquired with all of the pressure and temperature sensing
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ports instrumented, figure 2.2. Since incipient cavitation involves very
small cavities at or near the minimum pressure point---see figures 2.4
and 2. 5---the presence or absence of the additional sensing ports has no
effect on the data reported. The design and as=built venturi contours

are shown on figure 2.4. The test section dimensions were checked by
using the plastic venturi as a mold for a dental plaster plug. The plug was
then removed and measured. Pressure distribution for non-cavitating flow
across the quarter~round contour[3, 7] is shown in figure 2.5. This pres-
sure profile has been confirmed using several test fluids[ 3-5] and data
from this study, and applies when (Re)D 2 4x 105.

()

2.2 Instrumentation

Location of the essential instrumentation is shown on figures 2.1

and 2. 3.

Liquid level in the supply dewar was sensed with a ten-point carbon
resistor rake. Test fluid temperature in the supply dewar was determined
by two platinum resistance thermometers, see figure 2.1. Fluid tempera-
tures atthe flowmeter and test section inlet were also measured with plati-
num resistance thermometers. These platinum thermometers were cali-
brated to provide temperature readings accurate within %0, 04°R. The
thermometers were powered with a current source which did not vary more
than 0. 0l percent., Voltage drop across the thermometers was recorded
on a 5 digit electronic voltmeter data acquisition system. The overall

accuracy of the temperature measurement is estimated to be within 0. 09°R.

System gage and differential pressure measurements were obtained
with pressure transducers mounted in a temperature stabilized box near
the test section. Differential pressure measurements were used where
possible to provide maximum resolution. The pressure transducers were

calibrated via laboratory test gages at frequent intervals during the test




series. Repeatability of the transducers was better than %0, 25 percent
and their output was recorded on a continuous trace oscillograph with
approximately one percent resolution. The overall accuracy of the pres-
sure measurement, including calibration and read-out errors is estimated
to be within #2. 0 percent. Bourdon gages were used to monitor the vari-

ous tests.

Volumetric and mass flow rates were determined via a Herschel
venturi flowmeter designed to ASME Standards[8]. The internal contour
of this meter was verified in the same manner as the test venturi. An
error analysis of this flow device and associated pressure and tempera-
ture measurements indicates an accuracy in mass flow of about one per-

cent.

An electronic pulsing circuit provided a common time base for
correlating data between oscillograph, digital voltmeter, and movie film.
The data were reduced by first viewing film of the test event. A solenoid-
actuated counter, installed adjacent to the test section was energized by
the electronic pulser and appears on the film, figure 2.2. Thus, the
data are reduced at the desired instant of time by simply matching the

number of voltage pulses which have elapsed.

An acoustic cavitation detection device was developed and success-
fully used to determine cavitation inception. This device was found to be
more sensitive than the human eye, i. e., cavitation inception could be
detected with the acoustic transducer before it was visible to the unaided
eye, Visible incipience is frequently used as the criterion for cavitation
inception and is normally reported in the literature since the sensitivity
[9-11] of various acoustic detectors can vary appreciably. Although the
data presented here are based upon visible incipience, full description of

the acoustic transducer is given for reference in Appendix A of this paper.



2,3 Visual and Photographic Aids

Use of a plastic test section, liquid hydrogen, and relatively high
pressures precluded direct visual observation; therefore, closed-circuit

television was used to observe the tests.

Movies of cavitation tests were taken at approximately 20 frames
per second on 16 mm film. The variable speed camera was equipped
with a 75 mm lens and synchronized with a high intensity stroboscope,
providing a 3 H~sec exposure. The stroboscope was situated directly
opposite the camera lens and illuminated the test section through a plastic
diffuser mask; this technique provided a shadow-graph or back=-lighting
effect and excellent contrast between vapor and liquid phases in the test

section,
3. Test Procedure

The following procedure refers to figure 2.1. The supply dewar
was filled with test liquid and then some of the liquid was extracted through
valves A and B to cool the test section and piping. Approximately two
hours were required to cool the plastic test section without breakage.
Cooldown was monitored via a platinum resistance thermometer in the
plenum chamber. Upon completion of cooldown, the contents of the supply
dewar were transferred through the test section into the receiver dewar,
and then back into the supply dewar again. This operation cooled the
entire flow system in preparation for a test. Next, the liquid in the supply
dewar was heated to the desired temperature. Because the test section and
connecting piping were kept full of liquid at low pressure during preparatory
and calibration periods between tests, the plastic venturi was generally
colder than the test liquid. Supply and receiver dewars were then pressur-
ized to appropriate levels and flow started by opening valve C. In the case

of non-cavitating flow, inception was induced by lowering the receiver dewar

10




pressure and thus increasing the flow velocity until vapor appeared. To
obtain desinent cavitation from fully developed cavitating flow, the receiver
dewar pressure was increased until the vapor cavity was barely visible.
Receiver dewar pressure was remotely controlled by means of a pneumatic
transmitter, differential controller, and vent valve arrangement, figure
2.1. It was necessary to increase test section back-pressure by means of
throttle valve D for some of the liquid nitrogen tests. Flow was terminated
by closing valve C. The supply dewar was then vented and the test liquid
transferred back into the supply dewar for another test. As previously
mentioned, the entire test event was recorded on movie film which was

subsequently used to determine incipient and desinent cavitation conditions.
4., Data Analysis and Discussion

All of the useable experimental inception data are given in tables
4.1 and 4.2. These same data points were mathematically temperature -
compensated and presented in table 4.3, Derivation of these compensated

data is described in Appendix B of this paper.

The conventional cavitation parameter, Kiv’ for liquid hydrogen
is shown on figure 4.1, Little temperature dependency is evident in this plot
.of experimental data and this prompted the presentation of calculated data
given on figures 4.2 and 4. 3. The calculated data used in the preparation
of figures 4.2 and 4. 3 are derived as explained in Appendix B and are pre-
sented in table 4.4. The liquid nitrogen data were handled in a similar
manner and plotted on figures 4.4 and 4.5 from the calculated data of
table 4. 5. Photographs of cavitation inception are shown for both test

fluids on figures 4. 6 and 4. 7.
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Figure 4,2 Effect of Test Section Inlet Velocity and Liquid Temperature on
Required Inlet Head for Cavitation Inception in Liquid Hydrogen
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Figure 4. 6 Photograph Showing
Typical Cavitation
Inception in Liquid
Hydrogen

Figure 4.7 Photograph Showing
Typical Cavitation
Inception in Liquid
Nitrogen
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4.1 Data Analysis

Computed values of Kiv were plotted as a function of Vo for both
hydrogen and nitrogen. However, inspection of the plots showed no
readily discernable temperature dependence of KiV for uncompensated

experimental data (see figure 4, 1; nitrogen is similar and is not shown).

The temperature dependence of Kiv is complicated by the fact that
errors in the measured variable ho are magnified in the calculation of
K, as follows:
iv
-h
o v

h
- >~ | : r 1=
K, = ch[ > } [4.1-1a]

v
v
(o]

differentiating [4.1-la] at constant temperature and velocity there results,

ch
dKiV = — dho. [4.1-1D]

A\
(o]

The fractional change in KiV due to a change dh0 is obtained by dividing
[4.1-1b] by [4.1-1a],

= . [4.1-2]

The fractional change in ho due to a change dho is by definition

dh
o

h
o

The ratio of the fractional change in Kij to the fractional change in ho is

obtained by dividing [4.1-2] by dh /h ,
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dKiv/KiV h
& /b h-n [4.1-3]
O e}

Therefore any scatter which may occur in measuring h0 will be amplified
h

by the term , which has values as large as six for both hydrogen

—9°
h -h

o Vv
and nitrogen data given in this report.

Plots were also made of ho as a function of V using the experi-
o

mental data from this study. Both hydrogen and nitrogen date showed o
distinct temperature dependence; however, there was sufficient experi-
mental variation about each desired nominal liquid temperature to cause
concern in constructing the individual isotherms. A nominal temperature
or nominal isotherm is defined as that temperature which is selected to

represent a specific group of data points with little temperature variation.

A technique was devised to evaluate the effect of temperature on

the data ond is detailed in Appendix B of this report.
4,2 Discussion of Data

It was pointed out earlier that no temperature dependence could be
determined from Kiv vs Vo plots when the uncompensated experimental
data were used, figure 4.1. However, once the nominal ho vs Vo isotherms
were established by mathematical temperature compensation, the Kiv vs
Vo nominal isotherms may be computed from the basic definition of Kiv'
Data on figures 4.2 and 4.4 represents the final '""best-fit'' of the experi-
mental data points, "transferred' by means of equations [ 10-3] and [10-4]
to the nominal isotherms shown. This method of presenting the hO vs Vo
data elminates the scatter due to experimental free-stream temperature
variation, Good agreement was‘obtained with NASA data[ 7] for liquid ni-
trogen at 140°R; see figure 4.4. Since the NASA test section was 1.414
times as large as the plastic venturi described herein, negligible scale

effects are indicated.
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Minimum local wall pressure was calculated to be less than bulk
stream vapor pressure by as much as 323 feet of hydrogen head and 63
v
feet of nitrogen head, These data are obtained by subtracting h from h
v

in tables 4.1 and 4. 2.

Figures 4.3 and 4.5 are presented as a matter of interest, but it
is to be noted that these Kiv curves depend entirely on the shape of the

ho vs Vo curves, and that errors in hO are amplified in K, (as was shown

earlier). Little variation in the shape of the ho vs V0 curi;,es is required
to eliminate the inflection points in the corresponding Kiv vs Vo curves.
The Kiv curves indicate the usual trends, i.e., Kiv increases with in~
creasing velocities and decreasing temperatures. Figure 4.3 shows the
isotherms for hydrogen intersecting at an inlet velocity of about 140 ft/sec.
While this intersection is theoretically tenable, it could also be attributed
to experimental data scatter. The data on figure 4.1 indicate little termn~
perature dependence, and the data also suggests that Kiv may be invariant
at inlet velocities greater than 140 ft/sec. Both hydrogen and nitrogen Kiv

curves exhibit little temperature or velocity dependence at the higher

velocities,
5. Summary

Cavitation inception parameters have been experimentally measured
for liquid hydrogen and liquid nitrogen flowing in a clear plastic venturi.
The experimental data points are given in table 4.1 for liquid hydrogen
and table 4.2 for liquid nitrogen.

Temperature compensated values of inlet head, ho versus inlet
velocity, Vo, are presented on a background of mathematically tempera-
ture compensated isotherms; liquid hydrogen data are shown on figure
4.2 and liquid nitrogen data appear on figure 4.4. The 140°R isotherm

constructed from the liquid nitrogen data is coincident with data furnished
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by Ruggeri[7]. The venturi used in that experiment[4] was larger by a
factor of 1.414:1; therefore, negligible scale effects are indicated. The
mathematical technique used to temperature-compensate the experimental

data is outlined in Appendix B of this paper.

Figure 4.1 shows experimental KiV data points for liquid hydrogen;
these data have not been temperature compensated and show no particular
temperature trends. Temperature compensated values of the conventional
cavitation parameter, Kiv’ are also shown on figure 4.3 for liquid hydrogen
and on figure 4.5 for liquid nitrogen: these curves have been derived from
the smooth isotherms on the ho vs V0 plots (figures 4.2 and 4.4). The
data shows that Kiv increases with increasing velocities and decreases
with increasing temperatures. At the higher velocities the KiV curves
indicate very little temperature or velocity dependence. The data used

to construct figures 4.2 to 4.5 are given in tables 4.3 to 4. 5.

The experiments showed that both liquid hydrogen and liquid
nitrogen can sustain relatively large magnitudes of thermodynamic meta-
stability; i.e., minimum local wall pressure was calculated to be con-
siderably less than bulkstream vapor pressure. The magnitude of meta-
stability for the various experiments is obtained by subtracting i’/l from hv

in tables 4.1 and 4. 2.
6. Acknowledgements

A considerable number of people have been associated with this
project at various times and their individual efforts are respectfully
acknowledged. Mess'rs. Thomas T. Nagamoto, Dale R. Nielsen, Ray-
mond V. Smith, and W. Harry Probert assisted in the early phases of
apparatus asscmbly and experimentation. Mr. Peter Pemberton partici-
pated in some design modifications and Ajit Rapial was very helpful in the
reduction and analysis of data. The photographic instrumentation and

techniques used in this study are attributed to Thomas T. Theotokatos.

26




n,{n=1, 2---)

7. Nomenclature
test section inlet flow area [ = 0. 008063 ftz]
pressure coefficient [= (hx- ho)/(VOZ/Z.gC)]
minimum pressure coefficient [= (}\{ - ho)/(voz/ch)]
constants appearing in equation [ 10-1] which are
evaluated from best fit curves through ho vs Vo data
points
test section inlet diameter
conversion factor in Newton's law of motion, given in
engineering units as g, = 32. 2(ft)(pounds mass)/(secz)
(pounds force)
test section inlet head corresponding to absolute inlet
pressure, ft
value of inlethead corresponding to a data point before
it is "transferred" to a new position, ft
value of inlet head corresponding to a data point after
it has been ''transferred' to a new position, ft
head corresponding to ’satura.tion Oor vapor pressure
at test section inlet temperature, ft
head corresponding to absolute pressure measured at
wall of plastic venturi at distance x downstream of the

minimum pressure point, ft
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2 4

0,1

0,2

o,B

head corresponding to minimum absolute pressure on
quarter round of plastic venturi contour, ft, computed
from expression for \C,

incipient cavitation parameter [E(ho- hv)/(VOZ/ZgC )]
mass flow rate, e.g., (pounds mass)/sec

test section absolute inlet pressure

saturation or vapor pressure at test section inlet tgm—
perature

Reynolds number based on test section inlet diameter
temperature in degrees Rankine, of bulk fluid entering
the test section

the inlet temperature from which a data point is to be
"transferred'

the inlet temperature to which a data point is being
"transferred'

the nominal temperature chosen for construction of a
""base'' isotherm due to the availability of sufficient
ho vs VO data at or near that temperature

a nominal isotherm on a ho vs Vo plot

a nominal isotherm, different from To', on a h0 vs

Vo plot

28




"

velocity of test fluid at inlet to venturi test section
distance measured from minimum pressure point on

quarter-round contour along axis of plastic venturi
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9. Appendix A--~Acoustic Detector

A detailed drawing of the acoustic transducer is given on figure

9.1 and a schematic of the instrument hook-up is given on figure 9. 2.

The transducer consists of a Barium-Titanate piezoelectric crystal
sandwiched between the body of the transducer and a machine screw,
figure 9.1. The mechanical coupling or initial compression level in the
crystal could be varied by means of the machine screw. Thus, the
sensitivity of the crystal to mechanical vibration could be adjusted some~
what, Electrical leads were attached to the adjustment screw and to the
body of the transducer. Coaxial electrical wire was used to connect the
transducer to a cathode~follower-amplifier, see figure 9.2. The signal
was then filtered through a variable band-pass filter and displayed on an
oscilloscope. The band-pass filter was set to adinit signal frequencies

of 3 to 200 k-Hz for most tests.

The acoustic transducer was screw-mounted in the downstream
flange of the plastic venturi via pipe threads. Most of the system vibration
and noise appeared to be of low frequency and was easily eliminated with

the band-pass filter.

Cavitation was readily discernable on the oscilloscope and was

characterized by large-amplitude, high~frequency signals.
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10, Appendix B---Method Used to
Compensate the Experimental Inception Data for

Temperature Deviation about the Nominal Isotherms

(1) It was assumed that a change in inlet temperature, dTo’ will
produce a change in inlet head, dho’ along a constant velocity path, which
will be a function of the velocity and temperature only; it is also assumed
that this function may be approximated by a few terms of a polynomial.
Justification of these assumptions is evidenced by the good results which
were obtained for both hydrogen and nitrogen (see figures 4.2 and 4. 4)
by using the following equation:

dh = [C

2 2
o 1TO +C2To +C Vo +C4Vo +C5] dTo' [10-1]

3

Holding V constant and integrating from h to h and from T to
o o,1 o, 2 o, 1l

T there results:
o, 2

=T,

3 p
-1, 'l +c, [T

2 0,2

2
- TO 1)(C3V0 +C

+(To,2 . 4

VO +C5), [10-2]

where the subscript "'1" refers to the position of a data point before it is

transferred to a new position identified by the subscript "2'".

For each of the following steps (two through seven) there is a

corresponding graphical illustration on Figure 10.1,

(2) ho vs VO experimental data were plotted, a separate graph
being used for each test fluid. The data points were identified with their
individual temperatures so that '"best-fit' curves could be drawn through
each gr&up of data points having a common nominal temperature. A

nominal temperature is defined as that temperature which is selected to
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Illustration of Method Used to Construct Nominal Isotherms from

Experimental Data
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represent a specific group of data points having little temperature variation.
These first-approximation isotherms are shown as dashed lines on step

two of figure 10, 1.

One of the nominal isotherms is chosen, on the basis of availability
of sufficient experimental ho vs Vo data at or near that temperature, as a
reference or '"base' isotherm for succeeding computations. This isotherm
is designated TO B in figure 10,1 while the other isotherms are designated

T 'and T '.
o) o

(3) The constants in equation [10-2] are evaluated by selecting
pairs of values of ho and T0 from the nominal isotherms at identical
velocities as follows: on figure 10.1 the tail of each arrow indicates a
value of h and To, and To . The

0,1 1 , 2 » 2
coordinate points from each arrow are then used in equation [ 10-2]. Note

while the arrow head points to ho

that each arrow provides one equation, hence five arrows are needed to
evaluate the constants in [10-2]. The arrows always follow a constant
velocity path and must be strategically placed in order for the five equa-

tions to be independent. The actual data points are not shown since they

are not used in this step. The equation derived from this step will ""transfer"

data from one temperature to another within the confines of the bounding

isotherms.

(4) In step four of the illustration, arrows are used to indicate the
"transferral'' of experimental data points to a new location near the base

isotherm. h and T
0,1 o, 1

To. , is simply the base nominal temperature, TO, B’ values of ho, 2 can

then be determined, by using equation [ 10-2], and plotted near the base

are known from the experimental data, while

temperature, T Note that the data transfer always follows a constant

o,B’
velocity path.



(5) A new 'best fit'' isotherm can then be drawn through all of the
"transferred' data points at To, B’ This new curve is shown as a solid line
in figure 10.1; the first approximation isotherms, drawn as dashed lines,
are no longer needed and are omitted in the illustration of this step. The

curve obtained from this step represents an improved reference isotherm.

(6) The new reference isotherm and equation [ 10-2] may now be
used to reconstruct the other nominal isotherms. To' and To” may be

reconstructed by using equation [10=2] and h0 values from the new base

1

H4

isotherm. Note that T now becomes T and T ' and T " take their
o,B o,1 o o

respective turns as T0 2" Values of h0 , are then computed in order to
? H

plot the two new isotherms shown in the illustration of this step on figure

10. 1.

(7) The original experimental data points were then transferred
to their nearest nominal temperature by means of equation [ 10-2]. Those
points having a nominal temperature of T B were relocated in their final
position in step four. This process brings the data points near their re-
spective isotherms, as shown by the arrows in the illustration of step

seven. Note that ho is again the only unknown in equation [ 10-2].

, 2
(8) The agreement between the new nominal isotherms and the
transferred experimental data points was then observed: If the fit was
not satisfactory, 'best-fit'" curves were drawn through the 'transferred"
data points and the entire computational procedure-~-steps (3) through
(7)~-- was repeated. Several iterations were necessary to obtain suitable
mathematical expressions for liquid hydrogen and liquid nitrogen: tables
4.3, 4.4, and 4. 5 as well as figures 4.2 and 4. 4 were prepared by using

the following equations.




Hydrogen:

r i _ 2 2
Lho,2 ho,1 v 5.86 [(TO’Z) (To’l) 1
+(T0,2 - To’l) (0.41 V_ - 400.35). [10-3]
Nitrogen:
h h ~ 0.000835 [(T )3 T )3]
0,2 o,l vo“’ : ( 0,2 ( o, 1
0.2729 [(T_ )* (T )%] +30.152 (T T ).  [10-4]
o ( 0,2 o, 1 : 0,2 o,1” -

It should be noted that some of the terms in equation [10-2] become
negligible and consequently are not included in [ 10-3] and [10-4]. It is
observed that equation [ 10-3] for hydrogen is velocity dependent, while
equation [ 10-4] for nitrogen is not. Itis not recommended that equations
[10-3] and [10-4] be used outside the general area of the data points

given.
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